

NO-TILL METHODS FOR SOIL REGENERATION IN THE TROPICS: LESSONS LEARNED IN OUR FIRST YEAR OF IMPLEMENTATION

Jesyka Meléndez Rosa, PhD & Dylan P. Lunney

Finca JEVANA, Cidra, Puerto Rico

Finca JEVANA

Cidra, Puerto Rico ~1,300ft elevation Warm (~85F), tropical, humid

Regenerative Agriculture

A conglomerate of practices with a singular purpose:

To restore soil fertility

Soils as living organisms

One teaspoon of good soil may contain: 5 billion bacteria, 20 million fungi, & 1 million protozoa.

We are our soil

"Humane, humble and humility all come from the same Indo-European word root that means "humus" or <u>fertile earth</u>. – Peter Warshall

Yet...

- By 2050 90% of global top-soil will be at risk.
- We have around 50 years of soil fertility left.

Degraded landscapes

San Juan Area, Puerto Rico (PR686)

San Juan Area, Puerto Rico (PR686) 🛛 🚳											
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI								
CaF	Caguabo clay loam, 40 to 60 percent slopes	0.1	1.0%								
NaE	Naranjito silty clay loam, 20 to 40 percent slopes	3.6	36.0%								
RoC2	Rio Arriba clay, 5 to 12 percent slopes, eroded	6.2	63.0%								
Totals for Interest	or Area of	9.9	100.0%								

Degraded landscapes

SOIL ANALYSIS REPORT

Analytical Method(s): Mehlich 3 SMP Buffer pH Loss On Ignition Water pH

Date Received:	03/21/	2022		Dat	te Of	Analys	is: 03	/22/20	22		Date O	Of Rep	oort: 03	3/22/2	2022											
			OM	W/V ENR Phosphorus						Potassium		Magr	nesium	n Cal	Calcium		dium	рН		Acidity	C.E.C					
Sample ID Field II		Lab How	soil	pH a	ffec	ts av	ailab	ility	of pla	ant i	nutrier	nts	om R	late	k ppm	Rate	ppm	Mg n Rate	e ppm	Ca Rate	l ppm	Na Rate	Soil pH	Buffer Index	H meq/100g	meq/100g
1	High	Med	lium	Low	<i>.</i>										61	L	201	VH	395	i L	45	L	5.4	6.77	1.6	5.6
2		Strongly	Acid	Mediu Acid	I Slig Ac	tly Ven Slight Acik	Very Slight Alkalir	y Slighti Alkalin	y Medium Alkaline	SI	trongly Alkaline	0			48	VL	261	VH	391	L	70	М	5.5	6.77	1.6	6.2
3						PHOS		5							108	L	855	5 VH	908	8 VL	74	VL	5.5	6.50	4.3	16.6
			and the second second		SULPHUR			R			linc	Ν	Manganese Mn		Iro	n	Copper		Boron B		Soluble Salts					
Sample Field II										Zn		Fe			Fe											
					CALC		LCIUM				n Ra	te	ppm	Rate	ppm Rate		ppm	ppm Rate		Rate	ms/cm Rate					
1	-	•		IRON		MAG	NESIUM						} L		369	VH	142	VH	1.4	М	0.4	L				
2			MA	BORON	E) VI	L	289	VH	127	VH	1.2	М	0.3	VL				
3			COPPE	R AND 2	ZINC					MOI	LYBDENUM		; L		82	VH	173	VH	1.2	М	0.6	М				
Values of Soil pH soil. Ratii H (High), C.E.C	4.0	4.5 Optir	5.0 num soi	5.5 I pH rang	6.0 ge: 6.	6.5 2	7.0	7.5	3.0 8.	.5 §	9.0 9.5	10.0	centimions: pr	per m eter), om x 2	nillion), lb meq/100 2 = lbs/A	s/A)g Soluble	Th m e Ar	nis report aximum o nalysis pr	applies to of thirty day epared by	sample(s vs after tes Waypoin) tested. S sting. t Analytica	Samples a al Virginia	are retained a, Inc.	da by:	Pauric MC	Groary

Pauric Mc Groary Ph.D., CPAg

Despite our degraded starting material...

We've been able to use **regenerative** methods to **grow our top-soil** and...

- Amplify the conditions for the 'soil food web'
- Minimize erosion
- Maximize water retention
- Maximize carbon sequestration
- Maximize nutrient retention
- Eliminate the need for petroleum-dependent artificial inputs
- Eliminate the need for toxic chemicals

Making deposits into our soil bank

Permanent no-till raised beds & cover crops

Capturing indigenous microorganisms (IMO) – Johnson-Su Bio-reactor

Making and spraying compost tea

Permanent no-till raised beds & cover crops

Broad fork

Rotary plow

Tillage radish

Permanent no-till raised beds & cover crops

- Sunn hemp (*Crotalaria juncea*), Sorghum sudangrass (*Sorghum x drummondii*), tillage radish (*Raphanus sativus*)
- Flail mower -> to terminate and pulverize cover crop

Capturing indigenous microorganisms (IMO) – Johnson-Su Bio-reactor

Johnson-Su aerobic compost

Mycelium

Finished compost

the pilo, and nor do they give fungt complete free rein. We can do smaller bioreactors than the 375 gal version Dr. Johnson uses and use different ingredients, but we must maintain those key attributes for similar results to be had.

When analyzed, BEAM compositives an investible diversity of microbes including some that have not been documented since Louis Pasteur himself was scanning the

Global Gardener: In The Tropics (1989) with Bill Mollison

JOHNSON-SU "BEAM" COMPOST PREP

You don't have to create the same steed bioreactor, so please don the intimidated by the stee and elimensions mentioned here. BUT you do have to maintain the length of time (a full year), the 12° distance to open air from anywhere in the pile, the protection from light and the state nature of the pile. You don't have to have a metal form to held your pipes while you fill your bioreactor, and you don thave to make it aslange ideally, all materials should be dried before composing and their shredded or thipped for maximum curlece area. You don't have to do the evact ingredients listed (it can be entirely leaves), but to gets in lar results. I'd stick with the original recipe. Once your materials are the propersize, seek them in water for 50 seconds to adequately wet

them. This is similar to how some folks soak straw before using it. This type of composting method requires 70% or greater moisture levels for microbes to do their best this is why an inigation hose ring is used to inigate the bioreactor daily for 1 minute a day.

DAY 1

- 1. Gather all the supplies and tools needed for
- construction
 Create a cutting guide for the pipe holes using the diagram above
- Cut holes in your pallet using your newly orealed guide to avoid outting all the way through any planks - if you cut through any planks, use bricks or another support

Gaule for outing takes in the callet platform and ground cloth mean revealing fire callet.

176

"Using only 1 application of the advanced BEAM compost on only 20% of the arable land, we would see ALL excess atmospheric carbon taken into the soil within 1 year – it's just that easy, but it requires time, effort, resources, and investment to make it happen"

– Matt Powers, Regenerative Soil

Living soil is the key to regenerative agriculture

Making and spraying compost tea

- 🐱 55 gallons of rainwater
- 斗 15 lbs Johnson-Su compost
- 🛓 1 oz Bloomcity Humic Acid
- 0.50 oz PR KNF Oriental Herbal Nutrients (OHN)
- 🛓 4 oz Bloomcity KleanKelp
- 🛓 4 oz PR KNF Fish Amino Acids
- 🙀 8 Tbs Mycos WP Mycorrhizal Fungi

Oxygenate with Aquarium air pump ~24hrs

Finished Johnson-Su compost

SOIL ANALYSIS REPORT

Analytical Method(s): Mehlich 3 SMP Buffer pH Loss On Ignition Water pH

Date Received: 0		Date Of /	Analysis:	09/26/2023	Date Of Report: 09/26/2023												
O	Lab	ОМ	W/V	ENR		Phosphorus		Potassium	Magnesium	Calcium	Sodium	pН		Acidity	C.E.C		
Field ID	Lab Number	% Rate	Soil Class	lbs/A	M3 _{ppm} Rate	_{ppm} Rate	_{ppm} Rate	K _{ppm} Rate	Mg _{ppm} Rate	Ca _{ppm} Rate	Na _{ppm} Rate	Soil pH	Buffer Index	H meq/100g	meq/100g		
P1	25293	9.7 VH		150	420 VH			690 VH	588 H	3101 M	92 VL	7.0		0.0	22.6		
P2	25294	5.7 H		149	156 VH			393 VH	362 VH	1092 M	79 L	6.4		1.0	10.8		

Sample ID Field ID		Perce	nt Base	Saturati	on	Nitrate		Sulfur		Zinc		Manganese		Iron		Copper		Boron		Soluble Salts	
	K %	Mg %	Ca %	Na %	H %	NO ₃ ppm	N Rate	e ppm	S Rate	Z ppm	n Rate	Mr ppm	n Rate	F ppm	e Rate	C ppm	u Rate	B ppm	Rate	SS ms/cm Rate	
P1	7.8	21.7	68.6	1.8	0.0	21	Н	237	VH	23.3	VH	91	VH	227	VH	12.5	VH	1.7	Η		
P2	9.3	27.9	50.6	3.2	9.3	11	М	33	Н	5.8	Н	178	VH	354	VH	2.6	Н	0.5	L		

Bacteria

Shannon alpha diversity: ~4

Shannon alpha diversity: ~7

Shannon alpha diversity: ~5

Shannon alpha diversity: ~4

Resources

- Elliot Coleman "The New Organic Grower"
- Matt Powers "Regenerative Soil"
- Dr. Elaine Ingham The Soil Food Web
- Daniel Mays "The No-till Organic Vegetable Farm"
- Ian Jiménez PR KNF
- Harvey Acosta Regeneración de Suelos PR

CIG: Conservation Innovation Grants

Excited about regenerative soil? Get in touch! finca.jevana@gmail.com

Jesyka &